Compute one posterior draw from the smoothed transformation
implied by (separate) Bayesian bootstrap models for the CDFs
of y
and X
.
Arguments
- y
n x 1
vector of observed counts- xt_Sigma_x
n x 1
vector oft(X_i) Sigma_theta X_i
, whereSigma_theta
is the prior variance- z_grid
optional vector of grid points for evaluating the CDF of z (
Fz
)
Value
A smooth monotone function which can be used for evaluations of the transformation at each posterior draw.
Examples
# \donttest{
# Sample some data:
y = rpois(n = 200, lambda = 5)
# Compute 100 draws of g on a grid:
t = seq(0, max(y), length.out = 50) # grid
g_post = t(sapply(1:100, function(s) g_bnp(y)(t)))
# Plot together:
plot(t, t, ylim = range(g_post), type='n', ylab = 'g(t)', main = 'Bayesian bootstrap posterior: g')
temp = apply(g_post, 1, function(g) lines(t, g, col='gray'))
# And the posterior mean of g:
lines(t, colMeans(g_post), lwd=3)
# }