Sample the linear regression parameters assuming a g-prior
Source:R/STAR_Bayesian.R
sample_lm_gprior.Rd
Sample the parameters for a linear regression model assuming a g-prior for the coefficients.
Arguments
- y
n x 1
vector of data- X
n x p
matrix of predictors- params
the named list of parameters containing
mu
: vector of conditional means (fitted values)sigma
: the conditional standard deviationcoefficients
: a named list of parameters that determinemu
- psi
the prior variance for the g-prior
- XtX
the
p x p
matrix ofcrossprod(X)
(one-time cost); if NULL, compute within the function- X_test
matrix of predictors at test points (default is NULL)
Value
The updated named list params
with draws from the full conditional distributions
of sigma
and coefficients
(along with updated mu
and mu_test
if applicable).
Note
The parameters in coefficients
are:
beta
: thep x 1
vector of regression coefficients components ofbeta
Examples
# Simulate data for illustration:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# Initialize:
params = init_lm_gprior(y = y, X = X)
# Sample:
params = sample_lm_gprior(y = y, X = X, params = params)
names(params)
#> [1] "mu" "sigma" "coefficients"
names(params$coefficients)
#> [1] "beta"